GROUND SOURCE HEAT PUMP ANALYSIS FOR THE LOONGWOOD AT OAKMONT HEALTHCARE CENTER

TYLER LOBB AE SENIOR THESIS – SPRING 2008 MECHANICAL OPTION THE PENNSYLVANIA STATE UNIVERSITY

Project and Building Background

Building Existing Conditions

Mechanical System Redesign

Goals and Objectives

GSHP

Building Energy Utilization

Economic Analysis

Electrical Breadth: Power System Changes

Construction Breadth: GSHP Well Field Analysis

Redesign Conclusions

Project and Building Background

Building Logistics

- •Location: 500 Route 909 Verona, PA 15147
- •Building Occupant: Presbyterian Senior Care
- •Occupancy/Function Type: Senior Care Facility
- •Size: 45,000 SF
- •Date of Construction: November 2007 July 2008
- •Cost: Roughly 11 million dollars
- •Delivery Method: Design-Bid-Build

Project and Building Background

Project Team:

- Owner Presbyterian Senior Care
- General Contractor Mistick Construction (<u>www.mistickconstruction.com</u>)
- Architect Reese, Lower, Patrick, and Scott, Ltd. (<u>www.rlps.com</u>)
- MEP Engineer Reese Engineering Inc. (<u>www.reeseinc.com</u>)
- Structural Engineer Zug and Associates
- Civil Engineer Gateway Engineering Inc. (<u>www.gatewayengineering.net</u>)
- Landscape Architects Victor Wetzel Associates
- Food Services S.S. Kemp and Co. (<u>www.sskemp.com</u>)

Project and Building Background

Healthcare Center

- Private/Semi-Private Resident Rooms
- Offices
- Public Gathering Spaces
- Kitchens
- Beauty Shop

Project and Building Background

Building Existing Conditions

Mechanical System Redesign

Goals and Objectives

GSHP

Building Energy Utilization

Economic Analysis

Electrical Breadth: Power System Changes

Construction Breadth: GSHP Well Field Analysis

Redesign Conclusions

Building Existing Conditions

Energy Recovery Unit

- Supply Ventilation Air Throughout Building
- "Room Neutral" 79 F DB (Cooling) & 34 F DB (Heating)
- Distributed to Water Source Heat Pumps
- Fully Conditioned to Desired Set Point

Building Existing Conditions

Water Source Heat Pump

- Located in Virtually Every Space
- Perform Final Conditioning to Occupant Set Point
- 1/2 10 Nominal Ton Units
- Use Water Loop to Either Heat or Cool Air

Building Existing Conditions

Cooling Tower

- Closed Circuit, 325 Ton, Blow Through, Axial Fan
- Cools Water Loop

Boilers

- Gas-Fired Boilers Heat Water Loop
- Three Boilers, One is Used as Backup

Pumps

- Two Centrifugal Pumps Circulate Water Loop

Building Existing Conditions

Project and Building Background

Building Existing Conditions

Mechanical System Redesign

Goals and Objectives

GSHP

Building Energy Utilization

Economic Analysis

Electrical Breadth: Power System Changes

Construction Breadth: GSHP Well Field Analysis

Redesign Conclusions

Mechanical System Redesign

Goals and Objectives

- Increase Energy Efficiency
- Fulfill Needs and Budget of Client
- Compare WSHP System Versus GSHP System
- Limit Negative Effects on Other Systems

Mechanical System Redesign

Ground Source Heat Pump System

- Utilizes Earth's Underground Temperature to Transfer Heat
- Can Both Heat and Cool
- Numerous Up-Front Hurdles
- Potentially High Operating Cost Savings

Mechanical System Redesign

Mechanical System Redesign

Building Energy Utilization

- Mechanical Load Remains Same
- Efficiency for Conditioning Load Increases
- Decrease in Heating and Cooling Energy Usage
- 23% Decrease in Energy Building Consumption

Redesigned Annual Building

Mechanical System Redesign

Mechanical System Redesign

Economic Analysis

Initial Cost Comparison

Equipment	Existing WSHP System (\$)	Redesign GSHP System (\$)
Cooling Tower	43200	0
Gas-Fired Boilers	72900	0
Circulating Pumps	15360	30720
Ground Piping (Excavation/Installation)	0	294750
Equivalent Electrical Savings	4040	0
TOTAL	135500	325470

More Than Twice as Expensive Up-Front

Mechanical System Redesign

Economic Analysis

20 Year Cost Analysis

	WSHP	GSHP
Cost Description	System Costs	System Costs
	(\$)	(\$)
Utility Cost	1538400	1205400
Initial Cost	135500	325470
TOTAL	1673900	1530870

- Roughly 10% Cheaper
- Payback Period of 11 Years

Project and Building Background

Building Existing Conditions

Mechanical System Redesign

Goals and Objectives

GSHP

Building Energy Utilization

Economic Analysis

Electrical Breadth: Power System Changes

Construction Breadth: GSHP Well Field Analysis

Redesign Conclusions

Electrical Breadth Power System Changes

Mechanical System Power Redesign

- Electrical Driven Equipment Added and Removed
- Panel Boards Resized
- Feeders and Conduit Resized Accordingly
- Voltage Drop Checked

Electrical Breadth Power System Changes

Cost Analysis of Power Changes

Conductor Savings	\$1,130
Conduit Savings	\$2,910
Total	\$4,040

Electrical Cost Savings Due to Mechanical Redesign

Project and Building Background

Building Existing Conditions

Mechanical System Redesign

Goals and Objectives

GSHP

Building Energy Utilization

Economic Analysis

Electrical Breadth: Power System Changes

Construction Breadth: GSHP Well Field Analysis

Redesign Conclusions

Construction Breadth GSHP Well Field Analysis

Effects of Redesigned System

- Impact on Construction Schedule
- Physical Properties of Site
- Size and Location of Well Field

Construction Breadth GSHP Well Field Analysis

Project and Building Background **Building Existing Conditions** Mechanical System Redesign Goals and Objectives GSHP **Building Energy Utilization Economic Analysis** Electrical Breadth: Power System Changes Construction Breadth: GSHP Well Field Analysis

Redesign Conclusions

Redesign Conclusions

- Higher Initial Costs
- Annual Utility Savings
- Reasonable Payback Period
- Significant Savings Over 20 Years

Redesign Seems Beneficial Pending Owner

Acknowledgments

Thank You!

AE Department

- Advisor Dr. Freihaut

Reese Engineering

- James Hackman, P.E.
- Tim Scharf, P.E.
- Sam Snyder
- Brian Walker, P.E.

AE Students

- Doug Boswell
- Steve Haines
- Jason Witterman
- Kristin Maruszewski

Questions?

